The Semantic Web research community understood since its beginning how crucial it is to equip practitioners with methods to transform non-RDF resources into RDF. Proposals focus on either engineering content transformations or accessing non-RDF resources with SPARQL. Existing solutions require users to learn specific mapping languages (e.g. RML), to know how to query and manipulate a variety of source formats (e.g. XPATH, JSON-Path), or to combine multiple languages (e.g. SPARQL Generate).
The results of a SPARQL query are generally presented as a table with one row per result, and one column per projected variable. This is an immediate consequence of the formal definition of SPARQL results as a sequence of mappings from variables to RDF terms. However, because of the flat structure of tables, some of the RDF graph structure is lost. This often leads to duplicates in the contents of the table, and difficulties to read and interpret results. We propose to use nested tables to improve the presentation of SPARQL results.
Entity information is one of the most common types of reference data. As a critical data element, publishing entity data is a great knowledge graph use-case. The talk will share details about key capabilities required for building and maintaining entity knowledge graphs, practical insights and business benefits from their deployment.
Topics: