

AN ONTOLOGY ALIGNMENT APPROACH COMBINING WORD EMBEDDING AND THE RADIUS MEASURE

Molka Tounsi Dhouib

Catherine Faron Zucker Andrea G. B. Tettamanzi

Université Côte d'Azur, Inria, CNRS, I3S, Sophia Antipolis, France Silex, France

www.silex-france.com

THE COMPANY

Silex offers tomorrow's **SaaS solutions** for optimized sourcing.

PRODUCT

B2B platform to automate supplier identification and recommend companies for purchasing projects.

TECHNOLOGY

Artificial Intelligence Semantic Web

MONOPRIX

HOW ? CHALLENGES ?

О ноw

How to automatically align the entire vocabularies to extend the Silex ontology to all business sectors?

O CHALLENGES

- Dealing with heterogeneity
- Reuse information between ontologies

WHAT DO WE NEED ?

Define a measure of the similarity between entities or concepts of two ontologies

0

0

0

Define a methodology to refine the nature of the relationship between two similar concepts

Equivalence relation:
 skos:closeMatch/owl:sameAs

Hierarchical relation: skos:broadMatch, skos:narrowMatch / rdfs:subClassOf, rdfs:subPropertyOf

RELATED WORKS ON ONTOLOGY ALIGNMENT

O ELEMENT-LEVEL TECHNIQUES

Calculating the surface similarity between lexical information of entities (labels, comments ...)

STRUCTURE-LEVEL TECHNIQUES

Analysis of the neighbourhood of two entities

EXTERNAL TECHNIQUES

Use external information sources of a domain (wordnet, Wikipedia)

SEMANTIC TECHNIQUES

Interpret the meaning of the entities (word embeddings)

EXTRACTING LEXICAL AND STRUCTURAL INFORMATION

```
STRUCTURAL INFORMATION
        LEXICAL INFORMATION
SELECT ?uri ?label
 (group concat(DISTINCT ?mid label; separator=":") AS ?lineage)
WHERE {
  ?uri skos:prefLabel/rdfs:label ?label
  FILTER (lang(?label)='fr' en)
  ?uri ^skos:broader* rdfs:subClass/rdfs:subproperties ?mid .
  ?mid skos:prefLabel/rdfs:label ?mid label .
  FILTER (lang(?mid label) = `fr' en)
} GROUP BY ?mid ORDER BY count(?label)
```

EXTRACTING LEXICAL AND STRUCTURAL INFORMATION

Lexical information (#61) ={Telecommunications}

Structural information (#61) ={Telecommunications, Wired telecommunications activities, Wireless telecommunications activities, Satellite telecommunication activities, Other telecommunications activities})

COMPUTING WORD EMBEDDING REPRESENTATIONS

Vector representation of a concept (lexical information)

COMPUTING WORD EMBEDDING REPRESENTATIONS

SEARCHING FOR MATCHING CONCEPTS

match (c1, c2) = cosine distance (c1, c2) > threshold

REFINING THE NATURE OF THE RELATIONSHIP

BETWEEN TWO MATCHING CONCEPTS

 $radius = \sqrt{1/N} \sum_{i=\Lambda} (1 - w \downarrow_i \cdot w / |w \downarrow_i | \cdot |w |)$

/radius($C\downarrow1$)-*radius*($C\downarrow2$)/<0.1 \Rightarrow $C\downarrow1$ closeMatch $C\downarrow2$

```
/radius(C\downarrow1)-radius(C\downarrow2)/>0.1\RightarrowC\downarrow1 narrowMatch
C\downarrow2 and C\downarrow2 broadMatch C\downarrow1
```

DATA

Task-Oriented Complex Alignment on Conference Organisation

- OAEI
- OWL format
- 57 complexe alignement

Silex use case

- Computer science field
- Gold standard provided by an expert in the Silex company

	classes	Object Properties	Data Properties
cmt	30	49	10
conference	60	46	18
confOf	39	13	23
edas	104	30	20
ekaw	47	33	0

Skills and Oo	cupations	Business sec	tors
ESCO	160	NAF	53
ROME	117	Kompass	574
Cigref	42	Silex	14

EVALUATION PROTOCOL

Task-Oriented Complex Alignment on Conference Organisation

- Only complex alignement
- If the correct match is found among a proposed list, we consider that the entire proposed list is correct
- Precision, Recall and F-measure

Silex use case

• Precision, Recall and F-measure

O EXPERIMENTS ON TASK-ORIENTED COMPLEX ALIGNMENT ON CONFERENCE ORGANISATION

Systems	Precision	Recall	F-measure	Entities
Our System	0.89	0.69	0.77	All entities
Ritz e2009	0.30	0.13	0.19	All entities
Ritz e2010	0.83	0.09	0.18	All entities
Jiang 2016	0.09	0.11	0.10	All entities

- Cosine similarity < threshold : cosine similarity ('chair main', 'demo chair') = 0.3 < 0.8
- Our system is not designed to test hierarchical relations between two leaf nodes
- Assign equivalence relation instead of hierarchical relation

EXPERIMENTS ON THE SILEX USE CASE (COMPUTER SCIENCE FIELD)

Relations	Precision	Recall
closeMatch	0.71-0.80	0.60 - 0.95
narrowMatch	0.71-0.83	0.69 - 1.00
broadMatch	0.73 -1.00	0.68 - 1.00

FUTURE WORK

• WORD EMBEDDING

- Defining a specific set of pre-trained word vectors that best covers the Silex B2B use case
- Using the multilingual model of word embeding from fastText

C RADIUS

• Performing an empirical study to define the optimal threshold for radius difference

Thank you! Q & A

www.silex-france.com