

Using Semantic Technology to Solve Sparse Training Material Problem in Machine Learning for Classification of Company Websites

Klaus Kater Deep SEARCH 9 GmbH Managing Partner

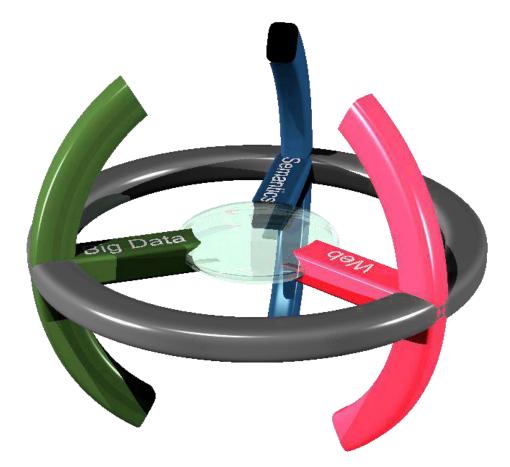
klaus.kater@deepsearchnine.com

SEMANTICS 2018

Where Machine Learning Meets Semantics 10th - 13th of September 2018 in Vienna

Deep SEARCH 9

Managed Intelligence.

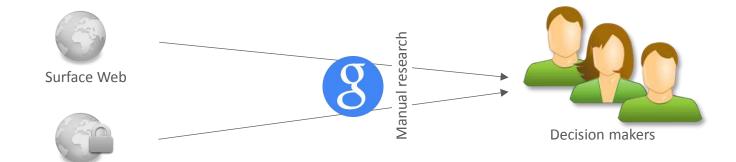


Web Information Analysis

Sources

Deep Web

Decisions



- 100s of emails...
- 1,000s of websites...
- Once a week, daily, every other hour?
- Keep sitting there, hitting F5 ;-)

Web Information Analysis

Sources

Decisions

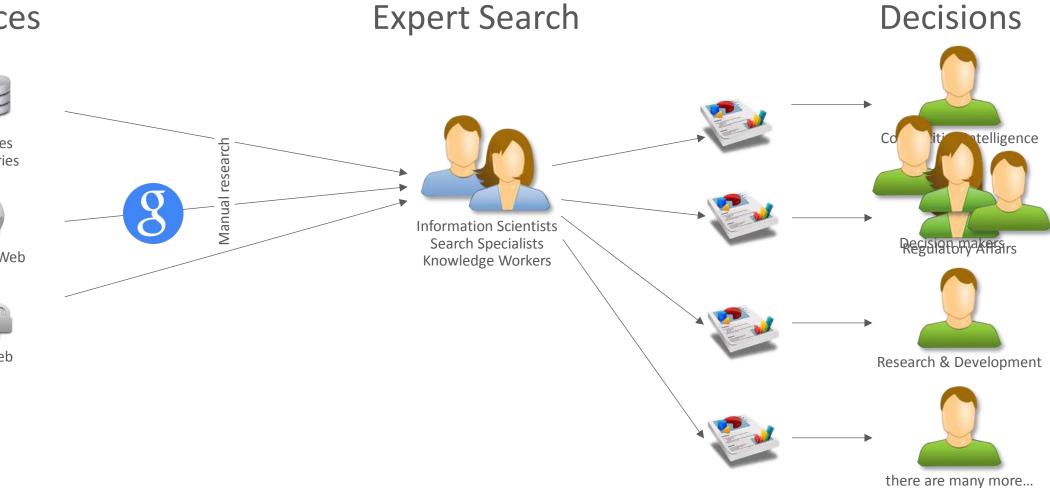
Surface Web

Deep Web

Web Information Analysis

Surface Web

Deep Web



Managed Intelligence

Sources

Search Competence Center

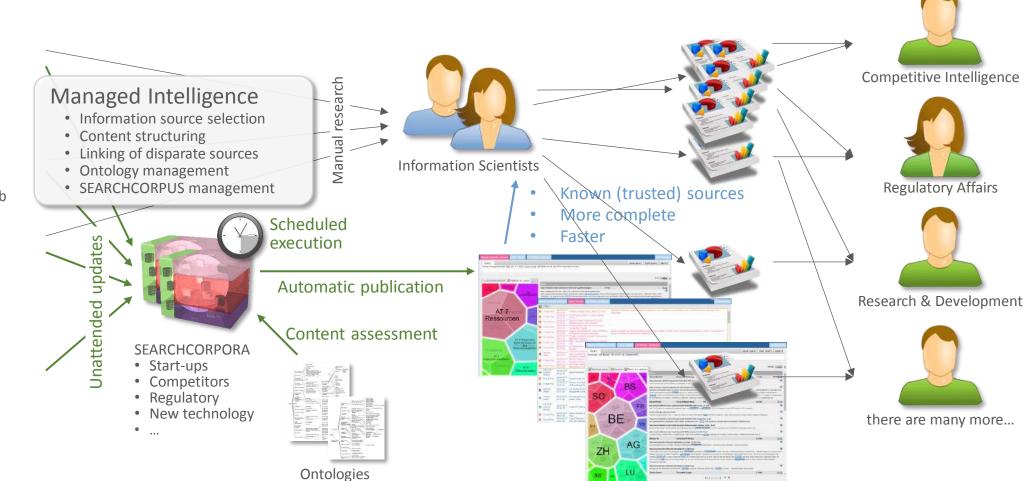
Decisions

Databases Repositories

Surface Web

Deep Web

Dark Web



Managed Intelligence

Sources

Search Competence Center

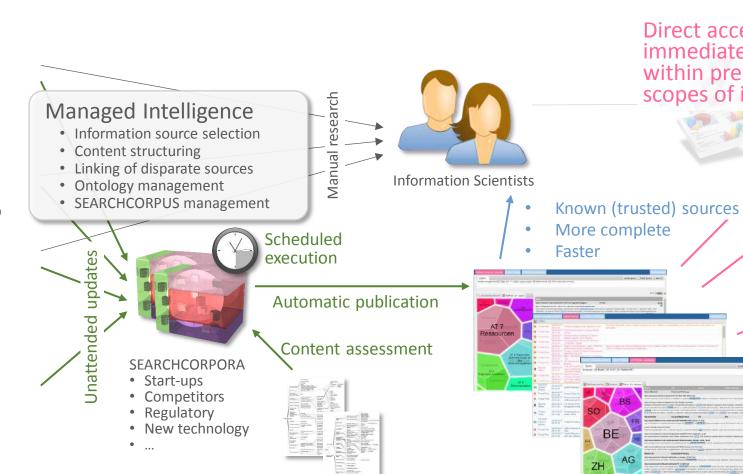
Decisions

Databases Repositories

Surface Web

Deep Web

Dark Web



Ontologies

Competitive Intelligence

Regulatory Affairs

Research & Development

there are many more...

Grow the Data Base

Universities

News Portals

Venture Portals

Collect company names and URLs of websites from many different sources:

ca. 40.000 company websites

Grow the Data Base

Universities

News Portals

Venture Portals

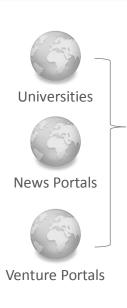
Collect company names and URLs of websites from many different sources

crunchbase

e.g. 700.000 companies listed on Crunchbase

10% of company websites are of interest

Grow the Data Base



Collect company names and URLs of websites from many different sources

crunchbase

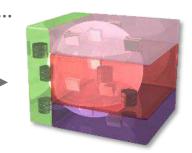
Focused Crawlers

e.g. 700.000 companies listed on Crunchbase

Master SEARCHCORPUS®

- ca. 100.000 websites
- Millions of web pages,
- Documents
- PDFs,

10% of company websites are of interest



>5 TB content

10

Tagging 5 TB?

Universities

News Portals

Venture Portals

Collect company names and URLs of websites from many different sources

crunchbase

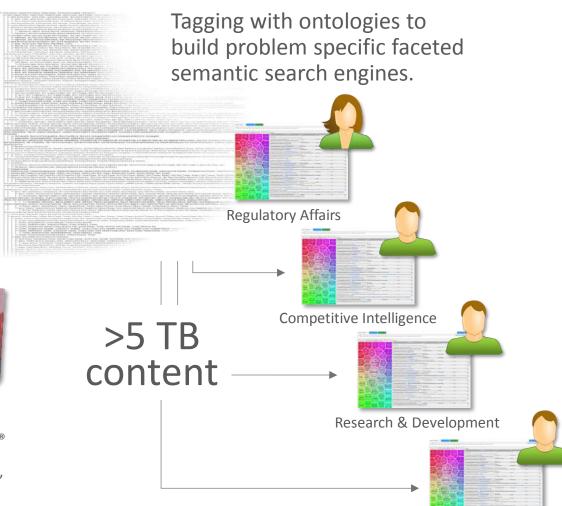
e.g. 700.000 companies listed on Crunchbase

ca. 100.000 company websites are of interest

Focused Crawlers

Master SEARCHCORPUS®

- ca. 100.000 websites
- Documents • PDFs,



- · Millions of web pages,

11

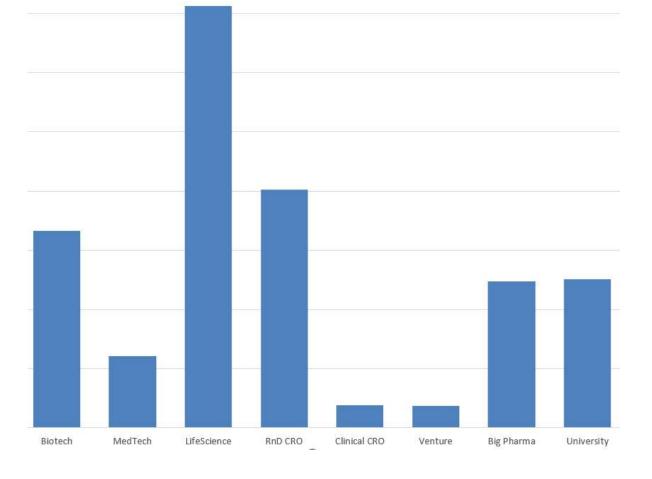
there are many more...

Cut Problem into Pieces

To reduce volume we need to filter early on...

12

- We use semantic search to filter for interesting research topics like diseases or treatment
- More interestingly: We can also filter by business model, development stage, i.e. anything that might be of interest



Website Classification

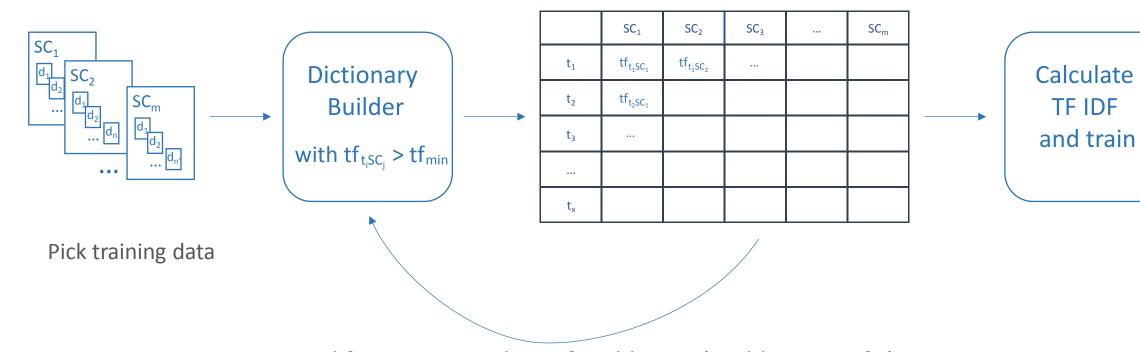
Requirements

- Classes are changing as new scopes of interest come up
- Company websites range from 1 page to 1000s of pages
- Companies may fall into several classes
- Training data could be < 50 samples, depending on class
- Data scientist must be able to create new classes on the fly

Classification using SVM

Support Vector Machine

We started to build feature vectors for SVM training using a classical TF IDF approach



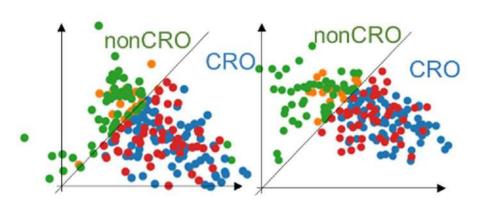
Loop until feature vector has a feasible size (problem specific)

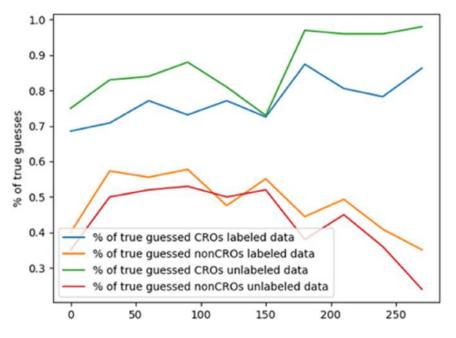
Classification Using SVM

Support Vector Machine

We started to build feature vectors for SVM training using a classical TF IDF approach

No conversion, training sets too small and not representative enough





Normalization of Input Data

Semantic Technologies

Custom Dictionary

Convert the generated TF based dictionary into an RDF ontology

Thesaurus for Normalization of Input Data

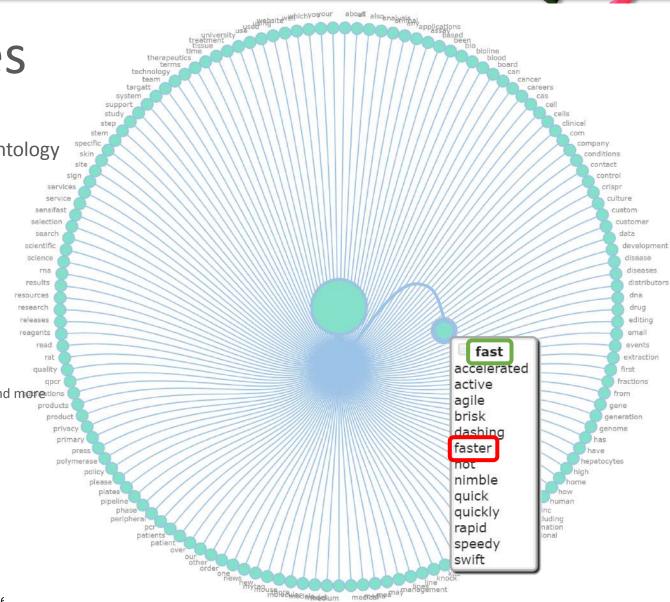
- Automatically fill the ontology with thesaurus data
- Manually optimize thesaurus in editor
- Normalize input data with thesaurus before classification
- Train SVM with normalized dictionary

Sample CRO Website Text

Our unique operation model propels you through the Proof of Concept phase faster and more than 100 per unique operation model propels you through the Proof of Concept phase faster and more than 100 per unique operation model propels you through the Proof of Concept phase faster and more than 100 per unique operation model propels you through the Proof of Concept phase faster and more than 100 per unique operation model propels you through the Proof of Concept phase faster and more than 100 per unique operation model propels you through the Proof of Concept phase faster and more than 100 per unique operation model propels you through the Proof of Concept phase faster and more than 100 per unique operation model propels you through the Proof of Concept phase faster and more than 100 per unique operation model propels you through the Proof of Concept phase faster and the Proof of Concept phase fa efficiently, placing your cancer therapy on the road to success.

CRO Website Text after Normalization

Our unique business model help you through the proof phase fast and more effective, placing your cancer therapy on the road to success.



https://deepsearchnine.com

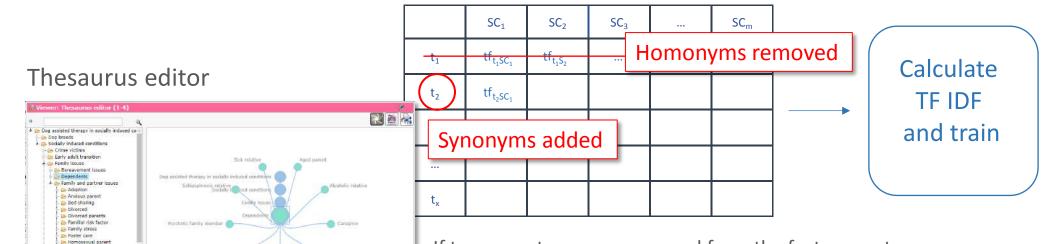
Normalization of Input Data

Support Vector Machine

Imprisonment of relative Infertile partner Marital problem

Multiple birth sibling

Group synonyms, remove homonyms, watch out for polysemy, add synonyms from dictionaries, clean



If too many terms are removed from the feature vector, because they are actually synonyms of some other term, we may have to again build another dictionary.

https://deepsearchnine.com 17

Normalization of Input Data

Support Vector Machine (Trained were 2 classes. Verification against 150/130/250 websites)

20 website	es used fo	r training											
#	tf min	Stemmer	Edited thesaurus	% Testing	Nu	Gamma	Epsilon	% correct	% false positive	% false	% not recognized	% correct and false positive	
6		yes	no	10%			0,001	37%	32%			12%	
7	50	no	no	10%			0,001	39%	31%	7%		10%	
8	50	no	curated no synonyms added	10%	0,1	0,01	0,001	39%	29%	6%	16%	11%	
9	20	yes	no	10%	0,1	0,01	0,001	64%	1%	0%	35%	0%	
10	20	no	no	10%	0,1	0,01	0,001	62%	5%	0%	33%	0%	
11	. 20	no	curated no synonyms	10%	0,1	0,01	0,001	67%	5%	0%	29%	0%	
12	20	no	curated with synonyms	10%	0,1	0,01	0,001	72%	9%	1%	16%	1%	
Now mod	ifying trai	ning and m	odel parameters										
13	20	no	curated with synonyms	25%	0,1	0,01	0,001	70%	11%	1%	16%	2%	
14	20	no	curated with synonyms	5%	0,1	0,01	0,001	76%	6%	1%	17%	0%	
15	20	no	curated with synonyms	5%	0,15	0,01	0,001	69%	12%	1%	17%	1%	
16	20	no	curated with synonyms	5%	0,05	0,01	0,001	71%	9%	1%	18%	1%	
17	20	no	curated with synonyms	5%	0,075	0,01	0,001	76%	COV	40/	4.70/	0%	
18	20	no	curated with synonyms	5%	0,0875	0,01	0,001	70%	∏ We got	some	pretty goo	d results but 198	
19	20	no	curated with synonyms	5%	0,075	0,05	0,001	74%	could n	could not get any better			
20	20	no	curated with synonyms	5%	0,075	0,1	0,001	71%		0%	29%	0%	
21	. 20	no	curated with synonyms	5%	0,1	0,05	0,001	76%	0%	0%	24%	0%	
22	20	no	curated with synonyms	5%	0,2	0,05	0,001	71%	0%	0%	29%	0%	
23	20	no	curated with synonyms	5%	0,15	0,05	0,001	72%	0%	0%	28%	0%	
24	20	no	curated with synonyms	5%	0,1	0,05	0,01	72%	0%	0%	28%	0%	

Website Classification

Problem

- We cannot find an exhaustive set of representative negative examples
- Therefore, we need to use 1-class SVM
- But TF IDF is not suitable for 1-class classification because it penalizes terms that appear in many documents
- Instead use Hadamard Product, which reinforces such terms¹⁾

$$\begin{pmatrix} tf_{t_{i}SC_{i}} \\ tf_{t_{i+1}SC_{i}} \\ \dots \end{pmatrix} \otimes \begin{pmatrix} tf_{t_{i}SC} \\ tf_{t_{i+1}SC} \\ \dots \end{pmatrix} = \begin{pmatrix} tf_{t_{i}SC_{i}}tf_{t_{i}SC} \\ tf_{t_{i+1}SC_{i+1}}tf_{t_{i+1}SC} \\ \dots \\ tf_{t_{r}SC_{r}}tf_{t_{r}SC} \end{pmatrix} \xrightarrow{\text{scale}} [0;1]$$

¹⁾See One-class document classification via Neural Networks, Larry Manevitz, Malik Yousef, 2007

Now we are processing...

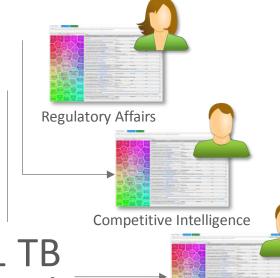


· Millions of web pages,

Documents

• PDFs,

Tagging with custom ontologies to build problem specific faceted semantic search engines.



ca. 1 TB content

Ontologies

Research & Development

SEARCHCORPORA

- Start-ups
- Competitors
- Regulatory
- New technology
- ...

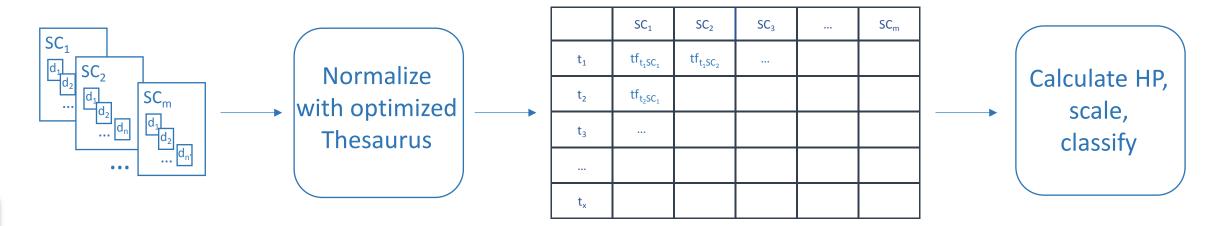
there are many more...

20

Sparse Training Data Classification

Normalized Input SVM

Thesaurus based input data normalization can optimize SVM classification with sparse training data:



- Normalize input with manually curated thesaurus,
- Use Hadamard product to generate feature vectors
- Scale
- Then classify

Using Semantic Technology to Solve Sparse Training Material Problem in Machine Learning for Classification of Company Websites

Klaus Kater Deep SEARCH 9 GmbH Managing Partner

klaus.kater@deepsearchnine.com

SEMANTICS 2018

Where Machine Learning Meets Semantics 10th - 13th of September 2018 in Vienna