## On the Effect of Geometries Simplification on Geo-spatial Link Discovery

Abdullah Fathi Ahmed ${ }^{1}$, Mohamed Ahmed Sherif ${ }^{1,2}$, and Axel-Cyrille Ngonga Ngomo ${ }^{1,2}$<br>${ }^{1}$ Department of Computer Science, University Paderborn, 33098 Paderborn, Germany afaahmed@mail.uni-paderborn.de<br>\{sherif|ngonga\}@upb.de<br>${ }^{2}$ Department of Computer Science, University of Leipzig, 04109 Leipzig, Germany<br>\{sherif|ngonga\}@informatik.uni-leipzig.de

12 September, 2018

## Outline

(1) Motivation
(2) Approach
(3) Evaluation
(4) Conclusion \& Future Work

## Motivation

- Linked Data Cloud
- http://stats.lod2.eu
- $150+$ billion triples
- $46+$ million links
- Mostly owl:sameAs
- Large geospatial datasets
- LinkedGeoData contains $20+$ billion triples
- CLC consists of $2+$ million resources
- NUTS contains up to 1500 points/resources



## - Link Discovery

- Given two knowledge bases $S$ and $T$, find links of type $\mathcal{R}$ between $S$ and $T$
- Formally find $M=\{(s, t) \in S \times T: \mathcal{R}(s, t)\}$
- Naïve computation of $M$ requires quadratic time complexity
- Geo-spatial resources available on the LOD
- Described using polygons
- Large in number
- Demands the computation of
(1) Topological relations
(2) point-set distance


## Motivation

- Real-time applications
- Structured machine learning
- Cross-ontology QA
- Reasoning
- Federated Queries
- ...
- The trade-off between
- Runtime and
- Accuracy

http://www.thepinsta.com
- Input: Polygonized curve with $n$ vertices
- Goal: Find an approximating polygonized curve with $m$ vertices, where $m<n$
- Idea: Approximate a line with a defined error tolerance $\epsilon>0$
- Many algorithms exist
- Douglas-Peucker
- Visvalingam-Whyatt
- Constract a line segment from the first point to the last point
- Find the point with farthest distance dmax from the line segment
- If $\epsilon$ tolerance $<d m a x$, the approximation is accepted
- otherwise, keep recursion

- Standard to describe the topological relations in 2D space.
- DE-9IM is based on the intersection matrix:

$$
D E 9 I M(a, b)\left[\begin{array}{l}
\operatorname{dim}\left(I\left(g_{1}\right) \cap I\left(g_{2}\right)\right) \\
\left.\operatorname{dim}\left(B\left(g_{1}\right) \cap I\left(g_{2}\right)\right)\right) \operatorname{dim}\left(I\left(g_{1}\right) \cap B\left(g_{2}\right)\right)\left(\operatorname{dim}\left(I\left(g_{1}\right) \cap E\left(g_{2}\right)\right)\right) \\
\left.\left.\operatorname{dim}\left(E\left(g_{1}\right) \cap I\left(g_{2}\right)\right)\right) \operatorname{dim}\left(E\left(g_{1}\right) \cap B\left(g_{2}\right)\right)\right) \operatorname{dim}\left(B\left(g_{1}\right) \cap E\left(g_{2}\right)\right) \\
\left.\operatorname{dim}\left(E\left(g_{1}\right) \cap E\left(g_{2}\right)\right)\right)
\end{array}\right]
$$

- At least one shared point for a relation to be hold
- For the disjoint relation $\Rightarrow$ inverse of the intersects relation
- Accelerates the computation of any topological relation
- Input Two resources with input geometries $g_{s}$ and $g_{t}$
- Compute the orthodromic distance $\delta\left(s_{i}, t_{j}\right)$ between pairwise point of $g_{s}$ and $g_{t}$

$$
\delta\left(s_{i}, t_{j}\right)=R \cos ^{-1} \sin \left(\varphi_{s_{i}}\right) \sin \left(\varphi_{t_{j}}\right)+\cos \left(\varphi_{s_{i}}\right) \cos \left(\varphi_{t_{j}}\right) \cos \left(\lambda_{s_{i}}-\lambda_{t_{j}}\right)
$$

$p_{i}$ is a point on the surface $\left(\varphi_{i}, \lambda_{i}\right)$, latitude $\varphi_{i}$ and longitude $\lambda_{i}$,

- Many methods exist to compute the $\left(g_{s}, g_{t}\right)$ point-set distance
- Hausdorff

$$
D_{\text {Hausdorff }}\left(g_{s}, g_{t}\right)=\max _{s_{i} \in g_{s}}\left\{\min _{t_{j} \in g_{t}}\left\{\delta\left(s_{i}, t_{j}\right)\right\}\right\}
$$

- Mean

$$
D_{\text {mean }}\left(g_{s}, g_{t}\right)=\delta\left(\frac{1}{n} \sum_{s_{i} \in g_{s}} s_{i}, \frac{1}{m} \sum_{t_{j} \in g_{t}} t_{j}\right)
$$

## Evaluation

- Line Simplification is independent from Link Discovery framework
- Stat of the art:
- Radon for topological relation extraction
- Orchid for point set distance
- Topological relations:
- within, touches, overlaps, intersects, equals, crosses and covers
- Point-sets distance:
- Hausdorff, Mean, Link, Min, and Sumofmin



## Evaluation Setup

- Hardware
- Oculus a cluster machine running OpenJDK 64-Bit 1.8.0161 on Ubuntu 16.04.3 LTS
- Assigned 16 CPU (2.6 GHz Intel Xeon "Sandy Bridge") and 200 GB of RAM with timeout limit of 4 hours for each job
- Datasets
- NUTS
- CORINE Land Cover (CLC)

How much performance (i.e., F-measure) each of the geospatial LD approaches loses, when to deal with the simplified geometries vs. when to deal with the original ones?

- The first set of experiments setup
- Radon for discovering topological relations
- Douglas-Peucker with simplification factors of $0.05,0.09,0.10$ and 0.2
- NUTS dataset as a source and CLC dataset as a target


## Evaluation

| Relation/Factor | 0.05 | 0.09 | 0.10 | 0.20 | Average |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Equals | 1.00 | 1.00 | 1.00 | 1.00 | $1.00 \pm 0.00$ |
| Intersects | 0.99 | 0.97 | 0.97 | 0.94 | $0.97 \pm 0.02$ |
| Contains | 0.99 | 0.97 | 0.97 | 0.93 | $0.97 \pm 0.03$ |
| Within | 0.99 | 0.97 | 0.97 | 0.93 | $0.97 \pm 0.03$ |
| Covers | 0.99 | 0.97 | 0.97 | 0.93 | $0.97 \pm 0.03$ |
| Coveredby | 0.99 | 0.97 | 0.97 | 0.93 | $0.97 \pm 0.03$ |
| Crosses | 1.00 | 1.00 | 1.00 | 1.00 | $1.00 \pm 0.00$ |
| Touches | 1.00 | 1.00 | 1.00 | 1.00 | $1.00 \pm 0.00$ |
| Overlaps | 0.80 | 0.52 | 0.47 | 0.28 | $0.52 \pm 0.21$ |
| Average | $0.97 \pm 0.07$ | $0.94 \pm 0.16$ | $0.93 \pm 0.17$ | $0.90 \pm 0.23$ | $0.94 \pm 0.03$ |

F-measures results of applying RADON against geometries generated using the Douglas-Peucker line simplification algorithm.

## Q1

How much performance (i.e., F-measure) each of the geospatial LD approaches loses, when to deal with the simplified geometries vs. when to deal with the original ones?

- The second set of experiments setup:
- Orchid for measuring the distance between point-sets
- Douglas-Peucker with simplification factors of $0.05,0.09,0.10$ and 0.2
- NUTS dataset dedublicated to compute F-measure
- NUTS dataset as a source and as a target (deduplication)


## Evaluation

| Measure/Factor | 0.05 | 0.9 | 0.1 | 0.2 | 0.3 | Average | $F_{\text {original }}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hausdorff | 0.90 | 0.91 | 0.91 | 0.91 | 0.91 | $0.91 \pm 0.00$ | 0.88 |
| Mean | 0.94 | 0.94 | 0.94 | 0.94 | 0.94 | $0.94 \pm 0.00$ | 0.94 |
| Min | 0.14 | 0.16 | 0.16 | 0.21 | 0.25 | $0.18 \pm 0.04$ | 0.13 |
| Link | 0.95 | 0.95 | 0.94 | 0.94 | 0.94 | $0.94 \pm 0.00$ | 0.94 |
| SumOfMin | 0.95 | 0.95 | 0.94 | 0.94 | 0.94 | $0.94 \pm 0.00$ | 0.94 |
| avarege | $0.77 \pm 0.36$ | $0.78 \pm 0.35$ | $0.78 \pm 0.35$ | $0.79 \pm 0.32$ | $0.80 \pm 0.31$ |  | $0.77 \pm 0.36$ |

F-measures results of the point-set distance measures implementations in Orchid using the Douglas-Peucker line simplification algorithm.

## $Q_{2}$

How well each of the geospatial LD approaches scale (i.e., runtime speedup), and when to deal with the simplified geometries?

- The third sets of experiments setup:
- Same setting as in the first sets of experiments
- Radon for discovering topological relations
- Douglas-Peucker with simplification factors of $0.05,0.09,0.10$ and 0.2
- NUTS dataset as a source and CLC dataset as a target


Runtimes of RADON's implementation of topological relations LD using the Douglas-Peucker algorithm

## $Q_{2}$

How well each of the geospatial LD approaches scale (i.e., runtime speedup), and when to deal with the simplified geometries?

- The fourth set of experiments:
- Same setting in the second sets of experiments
- Orchid for measuring the distance between point-sets
- Douglas-Peucker with simplification factors of $0.05,0.09,0.10$ and 0.2
- NUTS dataset dedublicated to compute F-measure
- NUTS dataset as a source and as a target (deduplication)


Runtimes of Orchid's implementation of set-points distance measure LD using the Douglas-Peucker algorithm

## Evaluation

Which relation is the most/least affected by the simplification process?

- Same setting in the first and second sets of experiments
- The relation overlaps has the most affected F-measure when using Douglas-Peucker algorithm, (see Table 14)
- The equals, crosses and touches are not affected at all by any simplification (see Tables 14
- In the case of point-set measures, the F-measure of min measure is the most affected, (see Table 16 )


## Q4

What is the run time cost of simplification?

- Same setting in the third and fourth sets of experiments


Total Runtime for all topological relations.


Average Runtime of a single topological relation.

Runtime of Radon on the original data vs. simplified data using the Douglas-Peucker algorithm.

## Conclusion \& Future Work

- Conclusion
- Studied the usage of line simplification as a preprocessing step of LD approaches over geospatial RDF knowledge bases
- Studied the behaviour of two categories of geospatial linking approaches (i.e., the topological relations and point-set distances)
- On average, F-measure of 0.94 using the Douglas-Peucker algorithm and 0.69 using the Visvalingam-Whyatt algorithm has been achieved.
- Gain up to $19.8 \times$ speedup using Douglas-Peucker algorithm and up to $67.3 \times$ using the Visvalingam-Whyatt
- Future Work
- Guarantee the minimum F-measure loss
- Determine fittest line simplification algorithm and its best parameter to achieve a better trad-off between F -measure and Runtime


## Thank you for your Attention!

## Abdullah Fathi Ahmed

af aahmed@mail.uni-paderborn.de
https://github.com/dice-group/Orchid


## Acknowledgment

This work has been supported by LEDS project, Eurostars Project SAGE (GA no. E!10882), the H2020 projects SLIPO (GA no. 731581) and HOBBIT (GA no. 688227) as well as the DFG project LinkingLOD (project no. NG 105/3-2) and the BMWI Project GEISER (project no. 01MD16014).

