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The Task of ATE
● Input: (reasonably large) domain specific, focused corpus
● Output: list terms from the corpus, representing the 

domain
● Approach

■ Candidate extraction: domain-dependent, usually noun 
phrases, n-grams, or sequence matched by PoS patterns

■ Candidate ranking & selection: scoring candidates 
based on corpus statistics, selection by threshold, or 
machine learning 

Domain specific 
corpus

ATE
Terms for the 

corpusCandidate
Extraction

Candidate
Ranking, 
Selection

[ semantic, 0.67,
  ontology, 0.34,
  nlp, 0.33
  text mining, 0.12
  …
  web page, 0.012   ]



The Task of ATE

● A classic text mining problem
■ Dating back to 1990s (Bourigault 1992)
■ To date still an active area of research

● A fundamental step to many complex tasks
■ Ontology engineering
■ Dictionary, terminology construction
■ Information Retrieval
■ Translation
■ …

● Context of this work: KNOWMAK (https://www.knowmak.eu/)

https://www.knowmak.eu/


The Task of ATE

Differentiation from related tasks

ATE

Keyword 
Extraction

- document specific
- only a handful
- mainly for indexing

- domain specific
- # depends on corpus
- mainly knowledge 
acquisition

NER - usually real world 
named entities
- sentence context is 
more important
- semantic typing

- domain specific 
terms
- corpus level statistics 
are more important
- no typing

Source: 
https://imanage.com/blog/named-entity-recognitio
n-ravn-part-1/



Motivation and Contribution

● ATE still an unsolved problem
■ No ‘all-rounder’ method
■ Performance always depends on data and domain
■ ‘one-size-fits-all’ solution feasible?

● ATE methods are predominantly unsupervised
■ For many domains there are already domain specific 

resources potentially useful, e.g., unlabelled corpus, 
pre-compiled named entity lists, partial ontologies, etc

■ Can we benefit from those?
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A generic method that employs semantic relatedness to a set of 
domain specific seed words to potentially improve any ATE 

algorithms (by up to 25 percentage points in average precision in 
experiments).
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AdaText - Overview
Adapted TextRank for Automatic Term Extraction
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  t3=1.41,
  t2=1.29,
  …  ]
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AdaText - Seeding
● Input

■ C - the target corpus from which terms are extracted
■ S - a set of ‘seed’ word/phrases representing the 

domain 
● taken from existing domain lexicons, or generated 

in an unsupervised way from available corpora
● May not contain real terms from C

● Process
■ Extract words from C, as W
■ Compute pairwise semantic relatedness for S x W

● Cosine similarity using GloVe embedding vectors
● OOV ignored, phrase based on compositional 

averaging (Iyyer et al. 2015)
● Output

■ Wsub a subset of W, satisfying relatedness > min
Intuitively, they are more ‘relevant’ to the domain



AdaText - Corpus Level TextRank
● Input

■ C - the target corpus from which terms are extracted
■ Wsub - the subset of words selected before

● Process
■ Apply TextRank to the graph created for Wsub to 

compute a TextRank (tr) score of every word w in Wsub
■ Traditional TextRank (Mihalcea et al., 2004) is a 

PageRank process to a graph of words from each 
document, where an edge is created if words co-occur 
in a context window of win

Compatibility of systems of linear constraints over the set of 
natural numbers. Criteria of compatibility of a system of linear 
Diophantine equations, strict inequations, and nonstrict 
inequations are considered. Upper bounds for components of a 
minimal set of solutions and algorithms of construction of 
minimal generating sets of solutions for all types of systems are 
given. These criteria and the corresponding algorithms for 
constructing a minimal supporting set of solutions can be used 
in solving all the considered types systems and systems of 
mixed types



AdaText - Corpus Level TextRank

● Input
■ C - the target corpus from which terms are extracted
■ Wsub - the subset of words selected before

● Process
■ Apply TextRank to the graph created for Wsub to 

compute a TextRank (tr) score of every word w in Wsub
■ Here it is adapted in two ways

● A graph of words from the entire corpus
● An edge is created if two words appear within win 

anywhere in the corpus (in any document)

● Output
■ tr scores for every word w in Wsub



AdaText - Combining with ATE
● Input

■ C - the target corpus from which terms are extracted
■ ATE - some ATE algorithm
■ tr scores for every word w in Wsub

● Process
■ Apply ATE to C to extract and score candidate terms
■ Revise each candidate term’s score using tr scores for 

its composing words

■ Then re-rank candidate terms by the new score

● Output
■ Re-ranked list of candidate terms



Experiment and Findings
● Base ATE methods (as AdaText needs ATE scores of 

candidate terms)
■ Modified TFIDF (Zhang et al., 2016)
■ CValue (Ananiadou 1994)
■ Basic (Bordea et al., 2013)
■ RAKE (Rose et al., 2010) 
■ Weirdness (Ahmad et al., 1999)
■ LinkProbability (LP, Astrakhantsev, 2016)
■ X2 (Matsuo et al., 2003)
■ GlossEx (Park et al., 2002)
■ Positive Unlabelled (PU) learning (Astrakhantsev, 

2016)
■ AvgRel - average relatedness score with seeds

● Use implementations:
■ JATE (https://github.com/ziqizhang/jate)
■ ATR4S (https://github.com/ispras/atr4s)

https://github.com/ziqizhang/jate
https://github.com/ispras/atr4s


Experiment and Findings

Evaluation measures
■ Precision for top K ranked candidate terms
■ K = {50, 100, 500, 1000, 2000} 
■ Average P@K for all five K’s



Experiment and Findings

Datasets

● GENIA
■ 2,000 semantically annotated Medline abstracts 
■ 434k words
■ 33k target terms

● ACLv2
■ 300 ACL paper abstracts
■ 32k words
■ 3k target terms



Experiment and Findings

Seeds and parameters

● For GENIA:
5,502 named entities from the BioNLP Shared Task 
2011, only 25 match candidate terms

● For ACLv2:
1,301 noun phrases from the titles of ACL, NAACL, and 
EACL papers (since 2000), none matches candidate 
terms

● Semantic relatedness threshold min=0.5 to 0.85 with 0.05 
increment (selects for GENIA/ACL ~ 50/70 % … 10/5 %)

● TextRank context window win=5, 10



Result - Base ATE

- Base ATE performance varies significantly depending on datasets.
- No single, consistently winning method on all five K’s. 
- E.g., PU is the best performing in AvgP@K on the ACL corpus, 

but the fourth worst performing on the GENIA corpus.





- The min threshold: too low (creating lots of isolated graphs) or too 
high (including too many weakly related words) can harm 
performance

- The win threshold: no strong pattern as to which (5 or 10) is better
- Within min=[0.6, 0.75], AvgP@K improvement by 1 ~ 25 

percentage points depending on the base ATE, and dataset



Conclusion

● The takeaway message
■ There is probably never a ‘one-size-fit-all’ ATE method, 

instead, think about improving existing ones
■ AdaText makes use of existing domain resources and 

builds on the TextRank algorithm
■ Generic method able to improve, potentially, any ATE 

method 

● Future work
■ Whether and how the size and source of the seed lexicon 

affects performance
■ Adapt TextRank to a graph of both words and phrases, 

and see how this affects results



Resources and Software

● Data
■ Genia corpus, ACL corpus available
■ Glove embeddings available

● Software
■ JATE (https://github.com/ziqizhang/jate)
■ ATR4S (https://github.com/ispras/atr4s)
■ Code for this work: https://github.com/ziqizhang/texpr

● Slides
■ https://goo.gl/1sPuhg

https://github.com/ziqizhang/jate
https://github.com/ispras/atr4s
https://github.com/ziqizhang/texpr
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