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e Input: (reasonably large) domain specific, focused corpus
e Output: list terms from the corpus, representing the
domain
e Approach
m Candidate extraction: domain-dependent, usually noun
phrases, n-grams, or sequence matched by PoS patterns
m Candidate ranking & selection: scoring candidates
based on corpus statistics, selection by threshold, or
machine learning
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e A classic text mining problem
m Dating back to 1990s (Bourigault 1992)
m To date still an active area of research

e A fundamental step to many complex tasks
Ontology engineering

Dictionary, terminology construction
Information Retrieval

Translation

e Context of this work: KNOWMAK (https://www.knowmak.eu/)
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e ATE still an unsolved problem
m No ‘all-rounder’ method
m Performance always depends on data and domain
m ‘one-size-fits-all’ solution feasible?

e ATE methods are predominantly unsupervised
m For many domains there are already domain specific
resources potentially useful, e.g., unlabelled corpus,
pre-compiled named entity lists, partial ontologies, etc
m Can we benefit from those?




Motivation and Contribution

e ATE still an unsolved problem

m No ‘all-rounder’ method

m Performance always depends on data and domain
m ‘one-size-fits-all’ solution feasible?

e ATE methods are predominantly unsupervised
m For many domains there are already domain specific
resources potentially useful, e.g., unlabelled corpus,
pre-compiled named entity lists, partial ontologies, etc
m Can we benefit from those?

-

A generic method that employs semantic relatedness to a set of
domain specific seed words to potentially improve any ATE
algorithms (by up to 25 percentage points in average precision in
experiments).
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Adapted TextRank for Automatic Term Extraction

Domain _ .
ifi oolong Zc;grgsrseg Semantic - Filter by

cream | e 1 s @
specirtic herbal  chamomile relatedne ;5‘,§§§$:Em*gﬁ?eigig-sitgagw threshold

pu-erh  americano S aemics s Sreunst words 281 b =,

Seed ginger cappuceinc colocations ) éleér!ﬁrif-&@“ﬁ}é.‘%gxggﬁ
gréen - macchialo i gvocabulary £l
itla caceino AIERONEE '
words/ g meer 'SEIWOrdS _
phrases <&
N TextRank

N

B

= ATE (any [ t1=1 .99, [ W1=O.67,

: algorithm) t,=1.21, w,=0.34,

w t,=1.10, w,=0.22,

R Re-rank
Domain specific

corpus [t,=2.19,
t,=1.41,
t,=1.29,

]



| University
%7 Sheffield.

Adapted TextRank for Automatic Term Extraction

Dom.a!n ooy e ey Semantic — Filter by
SpeC|f|C heroal  chamomile relatedne S Bl e 4 threshold
seed words/ & G i Bvocabulary e
vanitla mocaceino ;§§k§}§§:EEWQFdS
phrases dessert  rooibus B T —
RS
K
SEEDING " CORPUS LEVEL .
oy TEXTRANK
- P—— N
B |E (e | [ ATE (any t,=1.99, w,=0.67,
e : 1 1
algorithm) t2=1.21, + w2=0.34,
w w t,=1.10, W3=]0.22,

Domain specific
corpus

COMBINING

WITH ATE

@ Re-rank

[t,=2.19,
t,=1.41,
t2=1].29,




= B AdaText - Seeding
O oo Shefﬁeld

e Input
m C -the target corpus from which terms are extracted
m S -asetof ‘'seed word/phrases representing the
domain
e taken from existing domain lexicons, or generated
in an unsupervised way from available corpora
e May not contain real terms from C
e Process
m Extract words from C, as W
m Compute pairwise semantic relatedness for S x W
e Cosine similarity using GloVe embedding vectors
e OOV ignored, phrase based on compositional
averaging (lyyer et al. 2015)

e Output
m W_, asubsetof W, satisfying relatedness > min
Intuitively, they are more ‘relevant’ to the domain
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e Input

m C -the target corpus from which terms are extracted

Il Wsub - the subset of words selected before

e Process

m Apply TextRank to the graph created for W_, to
compute a TextRank (tr) score of every word win W_

m [raditional TextRank (Mihalcea et al., 2004) is a
PageRank process to a graph of words from each
document, where an edge is created if words co-occur

in a context window of win

Compatibility of systems of linear constraints over the set of
natural numbers. Criteria of compatibility of a system of linear
Diophantine equations, strict inequations, and nonstrict
inequations are considered. Upper bounds for components of a
minimal set of solutions and algorithms of construction of
minimal generating sets of solutions for all types of systems are
given. These criteria and the corresponding algorithms for
constructing a minimal supporting set of solutions can be used

in solving all the considered types systems and systems of
mixed types
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AdaText - Corpus Level TextRank

e Input
m C -the target corpus from which terms are extracted
m W_, -the subset of words selected before

e Process
m Apply TextRank to the graph created for W_ , to
compute a TextRank (tr) score of every word win W_
m Here it is adapted in two ways
e A graph of words from the entire corpus
e An edge is created if two words appear within win
anywhere in the corpus (in any document)

e Output
m {rscores for every word win W_
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e Input
m C -the target corpus from which terms are extracted
m ATE -some ATE algorithm
m trscores for every word win W_
e Process
m Apply ATE to C to extract and score candidate terms
m Revise each candidate term’s score using tr scores for
its composing words

Z L Eword: ,,)tr(w',')
score(t;) = (1.0 + S2=ores ) X ate(t;)
iwords(t;)|

m [hen re-rank candidate terms by the new score

e Output
m Re-ranked list of candidate terms
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e Base ATE methods (as AdaText needs ATE scores of

candidate terms)
m Modified TFIDF (Zhang et al., 2016)
CValue (Ananiadou 1994)
Basic (Bordea et al., 2013)
RAKE (Rose et al., 2010)
Weirdness (Ahmad et al., 1999)
LinkProbability (LP, Astrakhantsev, 2016)
X? (Matsuo et al., 2003)
GlossEx (Park et al., 2002)
Positive Unlabelled (PU) learning (Astrakhantseyv,
20106)
m AvgRel - average relatedness score with seeds

e Use implementations:
m JATE (https://github.com/zigizhang/jate)
m ATRA4S (https://qithub.com/ispras/atr4s)



https://github.com/ziqizhang/jate
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Evaluation measures
m Precision for top K ranked candidate terms
m K={50, 100, 500, 1000, 2000}
m Average P@K for all five K’s
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Datasets

e GENIA
m 2,000 semantically annotated Medline abstracts
m 434k words
m 33k target terms

e ACLvV2
m 300 ACL paper abstracts
m 32k words
m 3k target terms
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Seeds and parameters

e For GENIA:
5,502 named entities from the BioNLP Shared Task

2011, only 25 match candidate terms

e For ACLVZ2:
1,301 noun phrases from the titles of ACL, NAACL, and

EACL papers (since 2000), none matches candidate
terms

e Semantic relatedness threshold min=0.5 to 0.85 with 0.05
increment (selects for GENIA/ACL ~ 50/70 % ... 10/5 %)

e [extRank context window win=5, 10



Basic | LP | PU | CValue | GlossEx | RAKE | TFIDF | Weirdness | y* | AvgRel
ACLv2
P@50 34 A2 | .82 | 62 44 18 64 40 S8 | .30
P@100 72 69 | .82 | .69 46 A5 65 50 62 | .34
P@500 .56 56 | .60 | .67 34 29 53 .36 48 | .39
P@1,000 | 49 S1 | 43 | .56 36 29 A7 40 45 | 35
P@2,000 | .39 39 40 | 45 38 32 43 40 41 | 33
AvgP@K | .60 57 | .61 | .60 40 23 54 41 S2 | 34
GENIA
P@50 .80 38 | .74 | .86 88 68 68 78 66 | .16
P@100 74 S| .69 | .83 82 63 65 74 69 | 28
P@500 64 J0 | .65 | .80 S8 56 74 .78 g1 | .36
P@1,000 | .57 69 | .61 | .78 53 52 a7 7 g1 | 44
P@2,000 | .49 66 | .58 | .74 A7 44 7 74 67 | 42
AvgP@K | .65 59 | .65 | .80 66 57 42 76 69 | 33

- Base ATE performance varies significantly depending on datasets.

- No single, consistently winning method on all five K’s.

- E.g., PU is the best performing in AvgP@K on the ACL corpus,
but the fourth worst performing on the GENIA corpus.
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e The takeaway message
m There is probably never a ‘one-size-fit-all’ ATE method,
instead, think about improving existing ones
m AdaText makes use of existing domain resources and
builds on the TextRank algorithm
m Generic method able to improve, potentially, any ATE
method

e Future work
m \Whether and how the size and source of the seed lexicon
affects performance

m Adapt TextRank to a graph of both words and phrases,
and see how this affects results



Resources and Software

e Data
m Genia corpus, ACL corpus available
m Glove embeddings available

e Software
m JATE (https://github.com/zigizhang/jate)
m ATRA4S (https://github.com/ispras/atr4s)
m Code for this work: https://github.com/zigizhang/texpr

e Slides
m https://goo.gl/1sPuhg
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